Modification of the structural and electrical properties of graphene layers by Pt adsorbates
نویسندگان
چکیده
The properties of graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of platinum (Pt) metal on exfoliated single, bi- and trilayer graphene and on chemical vapor deposition-grown single-layer graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that Pt affects the structure as well as the electronic properties of graphene. The shift of peak frequencies, intensities and widths of the Raman bands were analyzed after the deposition of Pt with different thicknesses (1, 3, 5 nm) on the graphene. The shifts in the G and 2D peak positions of the Raman spectra indicate the n-type doping effect by the Pt metal. The doping effect was also confirmed by gate-voltage dependent resistivity measurements. The doping effect by the Pt metal is stable under ambient conditions, and the doping intensity increases with the increasing Pt deposition without inducing a severe degradation of the charge carrier mobility.
منابع مشابه
Effect of ultrasonic waves on morphology and electrical treatment of graphene
It is important to examine the factors that determine the properties of graphene. Various factors affect the properties of graphene nanosheets that can revolutionize the use of graphene. One such factor is ultrasonic waves, which have significant effects on graphene properties. In this research, we studied the effect of ultrasonic waves with different power levels (35, 50, 360, and 420 W) on fo...
متن کاملImproving the electrical properties of graphene layers by chemical doping
Although the electronic properties of graphene layers can be modulated by various doping techniques, most of doping methods cost degradation of structural uniqueness or electrical mobility. It is matter of huge concern to develop a technique to improve the electrical properties of graphene while sustaining its superior properties. Here, we report the modification of electrical properties of sin...
متن کاملQuantum Squeezed Light Propagation in an Optical Parity-Time (PT)-Symmetric Structure
We investigate the medium effect of a parity-time (PT)-symmetric bilayer on the quantum optical properties of an incident squeezed light at zero temperature (T=0 K). To do so, we use the canonical quantization approach and describe the amplification and dissipation properties of the constituent layers of the bilayer structure by Lorentz model to analyze the quadrature squeezing of the outgoing ...
متن کاملAg/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation
The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2014